509. Fibonacci-Number
difficulty: Easy
The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), for N > 1.
Given N
, calculate F(N)
.
Example 1:
Input: 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Note:
0 ≤ N
≤ 30.
Method One
class Solution {
public int fib(int N) {
//事实上我们只需要三个储存空间就行;
if( N == 0 ) {
return 0;
}
int prev2 = 0;
int prev = 1;
int ans = 1;
for(int i = 2; i < N + 1; i++ ) {
ans = prev + prev2;
prev2 = prev;
prev = ans;
}
return ans;
}
// 以下比较原始,因为空间浪费多;
// public int fib(int N) {
// if( N == 0 ) {
// return 0;
// }
// int[] ans = new int[N + 1];
// ans[0] = 0;
// ans[1] = 1;
// for(int i = 2; i < N + 1; i++) {
// ans[i] = ans[i - 1] + ans[i - 2];
// }
// return ans[N];
// }
}
Rolling array 的方法! 这比较适用于需要 prevPrev, prev 指针的 dp.
class Solution {
public int fib(int n) {
if (n == 0) return 0;
int[] fibo = new int[]{0, 1, 1};
for (int i = 3; i <= n; i++) {
fibo[i % 3] = fibo[(i - 1) % 3] + fibo[(i - 2) % 3];
}
return fibo[n % 3];
}
}
Last updated
Was this helpful?