038. Count-and-Say
difficulty: Easy
section pre{ background-color: #eee; border: 1px solid #ddd; padding:10px; border-radius: 5px; }
The count-and-say sequence is a sequence of digit strings defined by the recursive formula:
countAndSay(1) = "1"
countAndSay(n)
is the way you would "say" the digit string fromcountAndSay(n-1)
, which is then converted into a different digit string.
To determine how you "say" a digit string, split it into the minimal number of groups so that each group is a contiguous section all of the same character. Then for each group, say the number of characters, then say the character. To convert the saying into a digit string, replace the counts with a number and concatenate every saying.
For example, the saying and conversion for digit string "3322251"
:
Given a positive integer n
, return the nth
term of the count-and-say sequence.
Example 1:
Input: n = 1
Output: "1"
Explanation: This is the base case.
Example 2:
Input: n = 4
Output: "1211"
Explanation:
countAndSay(1) = "1"
countAndSay(2) = say "1" = one 1 = "11"
countAndSay(3) = say "11" = two 1's = "21"
countAndSay(4) = say "21" = one 2 + one 1 = "12" + "11" = "1211"
Constraints:
1 <= n <= 30
Method One
这个题麻烦在于弄懂题意。看起来好像可以递归,实际上不太能。 其实就是重复 n - 1 次 把一个函数的输出当成下一次的输入。 而这个函数本身干了什么事,虽然是这个题目中比较重要的部分,但是却是这个题中得到的最不重要的知识。 我觉得这个题目考察的最重要的就是,能写出下面这种去耦的代码。
class Solution {
public String countAndSay(int n) {
if( n == 1){
return "1";
}
String val = "1";
for(int i = 1; i < n; i++){
val = getNextVal(val);
}
return val;
}
public String getNextVal(String val){
StringBuilder sb = new StringBuilder();
char[] input = val.toCharArray();
char cur = input[0];
int count = 0;
for(char c : input){
if( cur != c ){
sb.append(String.valueOf(count)).append(cur);
cur = c;
count = 1;
}else{
count++;
}
}
sb.append(String.valueOf(count)).append(cur);
return sb.toString();
}
}
Last updated
Was this helpful?