388. Longest-Absolute-File-Path
difficulty: Medium
section pre{ background-color: #eee; border: 1px solid #ddd; padding:10px; border-radius: 5px; }
Suppose we abstract our file system by a string in the following manner:
The string "dir\n\tsubdir1\n\tsubdir2\n\t\tfile.ext"
represents:
dir
subdir1
subdir2
file.ext
The directory dir
contains an empty sub-directory subdir1
and a sub-directory subdir2
containing a file file.ext
.
The string "dir\n\tsubdir1\n\t\tfile1.ext\n\t\tsubsubdir1\n\tsubdir2\n\t\tsubsubdir2\n\t\t\tfile2.ext"
represents:
dir
subdir1
file1.ext
subsubdir1
subdir2
subsubdir2
file2.ext
The directory dir
contains two sub-directories subdir1
and subdir2
. subdir1
contains a file file1.ext
and an empty second-level sub-directory subsubdir1
. subdir2
contains a second-level sub-directory subsubdir2
containing a file file2.ext
.
We are interested in finding the longest (number of characters) absolute path to a file within our file system. For example, in the second example above, the longest absolute path is "dir/subdir2/subsubdir2/file2.ext"
, and its length is 32
(not including the double quotes).
Given a string representing the file system in the above format, return the length of the longest absolute path to file in the abstracted file system. If there is no file in the system, return 0
.
Note:
The name of a file contains at least a
.
and an extension.The name of a directory or sub-directory will not contain a
.
.
Time complexity required: O(n)
where n
is the size of the input string.
Notice that a/aa/aaa/file1.txt
is not the longest file path, if there is another path aaaaaaaaaaaaaaaaaaaaa/sth.png
.
Method One
class Solution {
public int lengthLongestPath(String input) {
// Note: \n \t 叫 escaped characters,长度是1。
// 这个题有 tree-structure 自然想到用 tree的DFS遍历
// 但是它只是一个String,写法上要有区别
// 注意到 每个 \n 都意味着一个新的元素,所以按 \n 分
// 注意,如果没有文件的话,长度是0.
LinkedList<Integer> pathLength = new LinkedList<>();
pathLength.push(0); // dummy length, and help to increase the size.
int maxLength = 0;
for(String path : input.split("\n")) {
int level = path.lastIndexOf("\t") + 1; // number of \t no \t would return -1 + 1 = 0;
// find correct father
while( level + 1 < pathLength.size() ) {
pathLength.pop();
}
int newLength = pathLength.peek() + path.length() - level + 1; // - \t + /
if(path.contains(".")) {
newLength -= 1;
maxLength = Math.max(maxLength, newLength);
}
pathLength.push(newLength);
}
return maxLength;
}
}
Last updated
Was this helpful?